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1.0 INTRODUCTION

The Army is currently developing liquid payloads for spin-stabilized
projectiles. A liquid filler can destabilize the flight of an aeroballis-
tically well designed shell. The instabil{ty mechanism is a resonance
between the coning frequency of the projectile and a natural vibration
frequency of the spinning liquid. Only simplified models have been used
in the past to study this liquid-induced, projectile instability. These
include linear models and axisymmetric (independent of circumferential or
azimuthal position within the fluid) finite-difference solutions to the
governing equations, the Navier-Stokes equations [Refs. 1, 2, 3]. The
linear models consist of closed form analytic solutions and/or numerical
solutions, The primary deficiency with the available models is that the
projectile yaw must be quite small, In fact, experiments to verify these
modes indicate serious nonlinear effects at yaw amplitudes well below those
common to projectiles [Refs. 4, 5], Hence, large yaw effects must be
incorporated into the modeling capabilities. Also, many of the linear
models do not properly treat the Boundary conditions at the liquid/solid
interfaces, Corrections are required within these models, but the correc-
tions are valid only for high Reynolds numbers. The axisymmetric Navier-
Stokes code cannot model the three-dimensional! disturbances of the liquid.
The natural frequencies of the liquid are truly three-dimensional oscilla-
tions and most flow problems cannot be treated by an axisymmetric code. A
full three-dimensional solution to the Navier-Stokes equations is required.
Viscous effects must be maintained properly in all coordinate directions to
properly model the rotating fluid, The code must also have a high Reynolds

number capability. This requires the use of a computational algorithm which
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is more complex than a standard finite-difference solution.

A numerical simulation capability developed specifically for the analy-
sis of fluid flow in liquid-filled projectiles and satisfying the above
requirements is described in Ref. 6. In that effort, the unsteady, incomp-
ressible Navier-Stokes equations for laminar flow are solved for the primi-
tive variables without recourse to linearization or simplification of the
equations of motion., The finite difference approximations to the govern-
ing equations are by choice either first or second-order time accurate and
are second-order accurate in the axial, radial and azimuthal directions
(with an option for fourth-order accuracy in the azimuthal direction). The
method allows imposition of arbitrary body motions including spin and pre-
cession and the corresponding boundary conditions are easily and directly
prescribed. The finite difference equations are solved using an implicit,
approximate factorization procedure that permits the choice of reasonably
large time steps and avoids limitations based on the magnitude of Reynolds
number. Thus, the numerical simulation methodology considered provides a
complete, and flexible framework for the computational analysis of fluid

behavior in liquid filled projectiles.

This report describes progress made in the computattional fluid dyna- |
mics of fluid filled spinning shells beyond the capability developed in
Ref. 6. One drawback of approximately factorized methods is the error due
to approximate factorization and how it affects the accuracy of the numer-
ical solution. This error has been eliminated in the current effort.
Rotating frames of reference have been utilized resulting in simpler codes
for simple coning, etc. Simple coning motion has been studied along with

the case of a spinning container with a precessing lid. A new code using
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the axisymmetric stream function formulation has also been developed.

In the next section, the derivation of implicit upwind schemes without
approximate factorization errors is outlined. This methodology has been used
in all the codes developed in the current effort, The third section deals
with the development of the axisymmetric code based on the stream function
formulation. The development of unfactorized implicit schemes for the
primitive variable formulation is outlined in the fourth section. The
fifth section deals with the governing equations in a rotating frame of
reference. The sixth section covers the application of the method to
simple coning and the seventh section describes the application to a
spinning shell with a precessing lid., Concluding remarks are offered in the

next section and a list of references rounds up the report.
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;;E ' 2.0 IMPLICIT UPWIND SCHEMES WITHOUT APPROXIMATE FACTORIZATION
-
{-,
E The unsteady Navier-Stokes equations can be divided into two sets of
;;5 terms accounting in turn for the inviscid and viscous behaviour of the fluid.
}:j Along with the time-derivative terms, the inviscid terms constitute a hyper-
7o bolic system of equations dominated by wave phenomena described by the theory
‘f: of characteristics. Implicit finite difference schemes for the unsteady
';f Euler and Navier-Stokes equations have for the most part used central space
differencing and have relied upon the techniques of approximate factorization
or fractional steps to handle multidimensions [Refs. 7, 8]. Even researchers
% using various upwind schemes (split-flux method or Harten's scheme) [Refs. 9,
She 10], have resorted only to these conventional approximate ways of splitting
,iﬁ the multidimensional operators into one-dimensional operators (which are then
ii solved efficiently using block-tridiagonal elimination). A plus-minus
e splitting scheme [Ref. 11] has also been attempted for the split-flux scheme
;;: leading to a different but once again approximately factored implicit scheme.
;2: In contrast to the above, an implicit upwind algorithm is used in the current
j{ effort. This method is devoid of errors of any kind of approximate factori-
.?f zation. The advantages of using such an algorithm for the Navier-Stokes
j_ equations for incompressible flow will be explained in later sections. A
i brief outline of the fundamentals underlying the new approach is presented
:;Z in this section. For a more complete description along with application to
éiz the compressible Euler equations, Ref., 12 may be consulted.
o
;{E 2.1 Theoretical Framework
i? it will be shown here that the new algorithm owes its existence to the
ﬁfz beneficial properties of upwind schemes for hyperbolic systems of equations.’
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It cannot be constructed for central differencing schemes. (These remarks

pertain to the hyperbolic part of the Navier-Stokes equations only. The
viscous terms are approximated only with central difference formulae.) At
the crux of the new method is the observation that upwind schemes result

in a diagonally dominant system of finite éifference equations governing
the change of dependent variables between two marching (time) steps. Such
a system can then be solved without factorization by using relaxation iter-
ations between the two time levels., The Gauss-Seidel iteration technique
lends itself naturally in this context as will soon be evident. Any other
iteration technique will work if it is applicable to a diagonally dominant
system of equations (thus pointwise Jacobi iterations will also suffice).
The choice of iteration scheme will also be guided by the internal archi-
tecture of the computer used (parallel, pipeline, sequential processors,
etc.) in as much as certain relaxation algoritms lend themselves better to

certain types of processing to achieve faster computational speed.

2.2 Implicit Schemes

We are concerned here with hyperbolic systems of equations (including
the unsteady Euler equations) in multi-dimensions. With the addition of
centrally differenced viscous terms, the methodology is easily extended
to the Navier-Stokes equations. Let the space variables be x and y and the
time variable t. Only two spatial dimensions are considered here but all

discussion extends in a straight forward manner to three dimensions (or to

one, although this is not so interesting). We will be considering a

quasi-linear system of equations of the type

L R S ol e - -

~ o -n‘ .
Wt

. - N - - - . - - - . - “ . e - -
e vt R ot ey e . . R - - .
e tamaat Lo d e e a e . - e it Al A2 T Al Al Ml ANl e




T W T e W T Wy _v*rj

LREN
n‘ S e .‘

a, + Aladg  + B(q)qy = 0 (2.1)

where q is an m-vector and A, B are m by m matrices. For simple
presentation of the underlying ideas, we will also be considering in more

detail the linear wave equation given by

u + au +bu =0 . (2.2)

There can be several representations and versions of implicit schemes.
A simple implicit scheme may be constructed for the equations given above
by employing a backward discretization of the time derivative. Thus, the

time discretized version of Eq. 2.1 is

n+i n+i n+l n+1
gt A (a)a, + B (q)qy

The two time levels have been indicated by n and n+tl , Except for the
case of linear systems, these discretizations obviously result in nonlinear
equations to solve for qn ] . The spatial discretizations will be discussed

soon.

By linearizing in some manner the Eqs. 2.3, linear implicit prediction

equations can be constructed for qn+] . For example, we can consider
n+l n
9 -9 ., Anqn+l + Bnqn+l = 0 (2.4)
At x y ‘
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2,3 A Simple Upwind Scheme

Let us discuss the two-dimensional wave equation. We shall see how a
simple upwind scheme for it results in a diagonally dominant system to solve.

Then we shall discuss the appropriateness of the Gauss-Seidel relaxation

procedure.

Assuming a and b are positive, backward spatial derivatives can be

used for U, and u to result in the upwind scheme

JHn un+l_un+l un+l_un+l
Jrk "j,k ik j-1,k Jok "j,k-1 =
i +a = + b 0 . (2.5)

This scheme is first-order accurate in space and time. By virtue of the
linearity of the governing equation (and the discretization), Eq. 2.5 is

. . . . +
a linear prediction equation for u" ]

2.4 Diagonal Dominance

Rewriting Eq. 2.5, we obtain

1 a by n+l a n+l b n+l n
(K? i ZV)UJ,k " Yok T u, (2.6)
for j =1, ..., J

k=1,

It is clear that if this is cast in matrix notation and boundary values of

un+l
0,k

columns,

aswmlatalalal.

u?+é are known, the system is diagonally dominant by rows and
’

In other words, if the elements of the matrix are dj K
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ld. .] > £ |d, | for j=1, J (2.7a)
Jl k#j J,k ’
Idk kl > L |dJ kl for =1,...,K (2.7b)

Ak

For the benefit of a beginner and for use later on in this report, the

full matrix is laid out in Table 1 for J=3 and K=3, 1t is clear that for

large J and K , it would be computationally very expensive to solve the

matrix equation by direct elimination. (However, in the special case of

upwind differencing we are considering for the case a and b positive,

the matrix is lower triangular and can be efficiently solved by direct eli-
mination; the above remark about computational expense is a general remark

for non-lower-triangular and non-upper-triangular systems of difference

equations). Thus, iteration schemes may be sought for to solve the system

of equations. Because of diagonal dominance, either point-Jacobi or

Gauss-Seidel iteration procedures may be used to iteratively compute

ujntl along with many other methods valid for diagonally dominant systems.

2.5 Jacobi iteration

i n+l

Let Vj K denote successive approximations to uj K The Jacobi
’

(also known as pointwise or simultaneous) iteration scheme for Eq. 2.6 may

be written as

n
u
P2 Ok i- -1 .
Vi ok S—( XS ER + rv ,k-l) , i=1, (2.8a)
with
0 n
ik T Yk (2.85)
8
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While convergence is guaranteed, it can be very slow for pointwise iteration.

2.6 Gauss-Seidel lteration

The Gauss-Seidel procedure may be written as

u
T .k i i
vj,k Y (T + q vj-].k + r Vj,k—l ) (2.9)

It is assumed here that the notation of Eq. 2.9 implies that v}_l K and

i . i
Vj,k-l will be computed before vj K

»

and thus Eq. 2.9 is an explicit

formula for v! . Note also that v' and v are known from
& 0,k j,0

boundary conditions. 1t is thus clear that in one full sweep (or fell swoop)

of all the grid points, u;+l is known (i.e. v
?

first iteration _ un+l )
ik Ik T
To make the procedure even clearer, the calculations may proceed in the

following order of grid points (corresponding to the example grid of

Table 1):
1,1 to 2,1 to 3,1 to or simultaneously with 1,2 to 1,3
to 2,2 to 2,3 to or simultaneously with 3,2

to 3,3 . (The “simultaneously with' operations can be exploited for
parallel processing). It is thus clear that the Gauss-Seidel! method is
actually more natural for the wave equation than for a linear elliptic

equation,

2.7 Notes on Direction of Sweep

However, it is also clear that the direction of sweep is very
important to this one step convergence. Other directions of sweep implied

for example by
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u, . .
i = 1oLk i i-1
Vi k 5 (=+ q Viagk * T vj,k-l) (2.10)

(backward k sweep , forward j sweep)

or

J"
V. = _!_ ( J’k
ik P

i~ i
-t 4 vj-l,k +r vJ K- ]) (2.11)

(backward j sweep , forward k sweep)

will lead to slow convergence. The preferred Gauss-Seidel iteration, Eq. 2.9
is actually identical to a direct elimination method of solution of the mat-
rix system of equations recognizing the fact that the matrix is of lower

diagenal form and very sparse.

2.8 Notes on Signal Propagation Directions

The constants a and b of the scalar wave equation (Eq. 2.2) signify
signal propagation directions by their signs and signal propagation speeds
by their magnitudes. When a and b are both positive, signals travel to
the right (along the positive coordinate direction) in both x and y. |If
a or b had been negative, it wéuld have been appropriate to use forward
differences for the space derivative(s) which the negative constant(s)
multiplied. In that case, the directions of sweep in the Gauss-Seidel proce-
dure must be changed. The boundary conditions must also be specified along
different boundaries than those natural for the case when a and b are

positive.

2.9 The Variable Coefficient Linear Wave Equation

Thus far, we have considered a and b to be of the same sign through-

out the field. In such situations, one of the four different combinations

10
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of forward or backward sweeps in j or k will result in one step conver-
gence of the Gauss-Seidel procedure. Let us consider a and b to be not

constant, but
a = alx,y,t) , b = bix,y,t) : (2.12)

A generalized upwind scheme for Eq. 2.2 with variable coefficients may be
written in such a manner that the signs of a and b are automatically
monitored and corresponding one-sided derivatives assigned. One represent-

ation can be

ST ] | RAANRLY
u” —u a+|a[ J k J -1 k\ _ (a- al J,k ¥ ky
“Z?"‘ + ( ) ( (=) (4 )
(2.13)
un+l_un+l un+l_un+|
+ (b+]b]\( jok i k=1y (b-lbl\ T Y E
2 7 Ay ‘ 2 7 Ay

2,10 Cycling Forward and Backward Sweeps

The following sequence of two Gauss-Seidel (forward and backward)

sweeps is expected to be efficient for this general case.

n
Ly lel el L Yk
Gt o Yy ik (2.14)

a+|a a-|a i2 b+ib il b-ib i2
(—L'I') B E—IA_X-LV_]-H,k (E‘AVL)Vj,k-I B ('Z—LVL)VJ,HI

il = iand {2 = i-1 for odd i, il = i-1 and i2 = i for even i,

When a and b are of the same sign (+ or -) throughout the field, one

11
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Sﬁ cycle (a forward and a backward sweep) is enough for convergence. In the
;&5 general case, when a and/or b change sign in the field, one cycle will
7

A not be enough, but this procedure leads to a quite rapid convergence.

:;: 2,11 Second-Order Accuracy

%ﬁ We have so far discussed only algorithms that are first-order accurate
gé{ in time and space. We now cover second-order accuracy in each.

~

; Second-order time accuracy is very easily achieved by simply replacing
32' the two-point backward temporal differencing by a three-point backward

,; formula in time which for equal time steps can be written as

s o = L5g -24" 40547 (2.15)
Mo t At

N

- A modified formula may easily be obtained for varying time steps.

3;5 Second-order spatial accuracy is aiso achieved as easily as time

{j. accuracy. In practice, all one must do is to use second-order upwind

iff discretizations on the right hand side of the equation that describes

- the relaxation algorithm before the step of writing the Gauss-Seidel

k- sweeps. For example, the x-derivative term may be discretized as

L~
A R ERALLIE (2.16)
A

for backward difference approximations needed with positive propagation,
- These second-order discretizations may have to be suitably modified or
limited to result in a TVD scheme [Ref. 12]. Numerical experiments show

"l that even without limiting, rapid convergence of the relaxation iterations

is possible for the problems under consideration.
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3.0 AXISYMMETRIC STREAM FUNCTION FORMULATION

The Navier-Stokes equations fit very well into the framework developed
in the previous section., As a first application, we consider here the incomp-
ressible flow of a fluid contained in a spinning shell, For simplicity of
treatment here, let the container be a body of revolution spinning about its
axis. If 2z were the axial direction and r and 6 the polar coordinates
in the plane perpendicular to the axis, the governing equations may be exp-
ressed in terms of an axisymmetric stream function ¢ , a vorticity L and
a circulation y (see Ref. 3 from which the governing equations are adapted

here) in the r, 8, z coordinates as

Y
Vzw - —;- = rg (3.1a)
g
L _oX N S S 4
g, tug +wig -ux -2 3 Yz etV e+ — % ] (3.1b)
1,52, Y
Yot u Y, tw, =E[VY'_:: ] (3.1¢)
Here,
2 2 2
V2 = 9—2 + 2—2 , Re = a = Reynolds number .
v
or 92
(3.1d)
Y = rv, u = (lbz)/r, w = -(wr)/r

where 1 is the spin rate and v is the azimuthal velocity.

Al) variables above are non-dimensional. The non-dimensionalization

used is given below (once again taken from Ref. 3).

r=R/a, u=U/(Qa) , v=Vv/(Qa) , w=W(Ra) , z=12/a

ve=¥/(Qa0) , y=T/(Qa2) , £=T/2, t=Ar
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The dimensional quantities have been shown above as capital letters. The

normalizing length scale a is usually chosen to be the cylinder radius.

The first equation (Eq. 3.1a) is an elliptic Poisson equation for the
stream function. The other two (Eq. 3.1b and Eq. 3.lc) are parabolic vor-
ticity transport equations. Without the viscous terms, these latter equa-
tions are hyperbolic. Note that these two equations for £ and ¥y involve
ther terms u and w which are derivatives of the stream-function, as only
multipliers of derivatives of L and Yy . Also, the first equation involves
no derivatives of T or vy (in fact no Yy even occurs there). Under these
circumstances, it is conventional procedure to first update vorticity and
circulation from the n-th time level to level n+l, Then, the updated
vorticity values are used on the right hand side of the equation for

stream function to update the value of V.

3.1 Numerical Method

In our procedure, along with this implementation, we use Gauss-Seidel
iterations for all three equationg after the transport terms of the equations
for vorticity and circulation are approximated using one-sided spatial
derivatives depending on the sign of the transport velocity multiplying
them. The elliptic part (the viscous terms) of Eqs. 3.1b and 3.lc fit
snugly into the structure of Gauss-Seidel iterations and Eq. 3.la is noth-

ing but elliptic.

We now write down the discretizations in detail for Eqs. 3.1. Let
the coordinates r and z be indexed with the subscripts j and |
respectively, Thus, j and 1 also denote computational coordinates

with grid points located at integer values of j and 1. The metrics

14
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are then given by 3r/3j, 3z/31, azrlajz, 322/312, etc. The following trans-

formations are then valid for any quantity f :

fe =/ 57 ‘ (3.3a)
2 2 2
21 - &5 - Enih/En? (3.3b)
ar 3j 3j2 0i78]

_ of , or
o =5/ a7 (3.ha)
2 2
AL AL A& (3.4b)
9z 9l

Central difference formulae for any quantity f are given by

5= (-0 (3.5a)
(%f/23%) = F, -2 F e (3.5b)

along the radial computational coordinate. Similar expressions are valid
along the axial coordinate. Forward and backward difference formulae for

first derivatives are given by

of . - -
57 = +U5 2 f,) + 0.5fF;,,,) (3.6)

Velocities u and w are computed from central difference formulae.
Central differences are used for all derivative terms in Eq. 3.la and all

derivative terms divided by the Reynolds number (i.e. all viscous derivative

15
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PE terms). All convective terms in Eqs. 3.1b and 3.1c (those first derivative
)
= terms multiplied by convection velocities u and w) are upwind differenced.
n For example, if u were positive in a term such as u fr , backward differ~
3 encing is used for 3f/3j , and when u is negative, forward differencing
}f is used., Any other derivative terms that have not been mentioned thus far
) are centrally differenced. For further details on the philosophy of upwind
;ﬁ differencing (in the context of the non-conservation law representation of
f?f the equations used here), the reader may look up Refs. 13 or 14,
Conventional Gauss-Seidel relaxation is used for the Poisson equation
- Eq. 3.la. Each of the other two equations is treated as a scalar equation
;ﬁ and the Gauss-Seidel procedure similar to Eq. 2.14 is used for these but
g’ with second-order accurate spatial upwind differencing.
The boundary conditions used are outlined below (paraphrased from
‘ Ref. 3).
3 Along the cylinder axis:
- v(t,0,2) = v(t,0,z) = ¢(t,0,z) = 0 . (3.7)
Along the cylinder wall:
‘l’(t,'.z) = 0, Y(t,],Z) =1, C(t,].Z) = wrr(t!‘az) . (3.8)
‘E Along the cylinder end wall:
w(t,r,0) = 0, y(t,r,0) = r2, ¢(t,r,0) = (v, (t,r,0))/r . (3.9)
s Along the cylinder symmetry plane:
\<'~
iy v(t,r,0) = ¢g(t,r,a) =0, yz(t,r,a) =0 (3.10)
with o being the ratio of cylinder half height to its radius,.
,
o,
L
»

16
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Initial conditions are given by
w(0,r,2) =0, v(0,r,2) = (a,/a)r (3.11)
where Q is the final cylinder rotation rate (also used in the non-dimen-

sionalization process) and Qi is the initial rotation rate ( = 0 for

spin-up from rest).
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@}: L .0 PRIMITIVE VARIABLE FORMULATION
>
The primitive variable formulation is considered here in r, 6, 2
; (cylindrical) coordinates. The equations and method considered in this
,ff: section will be used in Sections 6 and 7.
DA
::E: L, The Governing Equations
-
The governing equations are written in the inertial coordinate system
d as follows:
;:, Momentum equations
3 E: d.u+ ud u+ (v/r)d u + wo_u -vz/r + 3. p = v(Vzu - (2/r2)a v - u/rz)
L t r ) z r 6
o 2 2 2
g d,v +ud v+ (v/r)d,v + wi_v +uv/r +(1/r)3,p = v(Vv + (2/r%)3,u - v/r°)
t r 3] z 0 ]
2
Btw +ud W+ (v/r)aew + wd_w + 3p = v(Vw )
A (4.1a)
- Continuity equation
p) 3 u+ (1/r)d v + 3 w+u/r = 0 (4.1b)
=
o In the above,
v 2 _ 42 2,.2 2
v 9+ ( r)ar + (1/r )Be + 3, (4.1¢)
and u = radial velocity, r = radial coordinate,
= v = azimuthal velocity, 0 = azimuthal coordinate,
w = axial velocity, z = axial coordinate.

The same non-dimensionalizations employed in the previous section has been

used in the above equations.
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The quantity Vv
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Reynolds number,

The continuity equation has no time derivative. To facilitate const-
ruction of an implicit numerical method, the continuity equation is modi-
fied (see Refs. 6, 15, 16 for a similar treatment applied to approximately

factored schemes) to be
3tP + B(aru + (l/r)aev + Bzw + u/r) = Btp* . (4.2)

The quantities 8 and p* and the numerical algorithm will be chosen

to let
Bru + (l/r)aev + BZw +u/r » 0 . (4.3)
Equations 4.1a and 4.2 may be combined to yield

T+ 5_6 + (1/r) E.ae + E-Ez +H. = B +(0,0,0 +) transpose

t r | v 't (li,ll)
where
Q= (u, v, p)transpose ﬁv = viscous terms, and ﬁi = jinviscid
terms that do not involve derivatives, and
(b 0 0 1] v 0 0 0 [w 0 0 0]
0 u 0O 0 v 0 1 0 w OO
A= s 8= , C= . (4.5)
0 0 u O 0 0 v O 0 0 w |
0 0 O 0 0 0 0 0 0
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4.2 The SCM Method

The Split Coefficient Matrix (SCM) method of discretization is applied
to the hyperbolic part of the modified Navier-Stokes equations. A detailed
description of the SCM method can be found.in Refs. 13 and 14, The method
applied to the equations under consideration here is sufficiently described

SRR now for completeness,

Each of the coefficient matrices A, B, C can be written as (in
the following, we do not type an underscore for the matrices and we

delete the arrow on top for the vectors)

A = RA,L B = Rghply , C = RAL, . (4.6)
Here, the subscripts A, B, and C for matrices R, A, and L are used to
denote what coefficient matrix the latter correspond to. The matrix of
right (or column) eigenvectors of a coefficient matrix has been denoted
e by R. That is, each column of R 1is a right eigenvector of the corres-
ponding coefficient matrix, Simiiarly, each row of L is a left (or row)
eigenvector of the coefficient matrix. The diagonal matrix of eigenvalues

of the coefficient matrix has been denoted by A. Thus, for example,

2
i ARy, = Ry Ay o LyA=MA Ly : (4.7)
e
ed
M In Eqs. 4.6, it has been tacitly assumed that the left and right eigen-
Ei;i vectors have been suitably normalized such that
e RL = L R = | (4.8)
;j:
{} where | is the identity matrix. When the coefficient matrices belong
L]
A
.

B '&
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to a hyperbolic system of equations, the left and right eigenvector matrices
are of full rank (i.e. within each of these matrices, each eigenvector is

linearly independent of the others).

For the SCM method, the eigenvalues are split into those that are posi-
tive and those that are negative (and those that are zero can be in either

group) .
A=+ a2, AT = (- AN (4.9)

Now, the split coefficient matrices may be defined to be

(4.10)

Rewriting each coefficient matrix as the sum of its positive and nega-
tive parts, it is appropriate to use backward difference approximations for
those first derivative terms that are multiplied by the positive part of

the coefficient matrix and vice-versa. Thus,

n

A Q A, Qp + AL Qrf. (4.11)

r

with subscripts b and f denoting backward and forward differences.

Equation 4.11 may be rewritten as

aq = glaslaD o + a-laD o, (4.12)
with |A| = Ra lAAI L,- Equation 4,12 may be rewritten in turn as
AQ. = A(Q* /2 + Al (Q-Q.¢)/2 (4.13)
21




Assuming

j, k, and 1

to be the indices corresponding to r, 6, and z

(as was done in the previous section), and using second-order accurate one-

sided formulae, we obtain

Qrb

[H

Qrf

Substituting this into Equation 4.14, we obtain

- 1 -
A Ql" = (m AJ- (Qj+]-Qj'l-(Qj+2 Qj_z)/li

1
* @7 1451 Q02600 0y ) 4

-(1.5Q; - 2. Qp,, + 0.5 Q,,)/(3r/3))

(4.15)

(4.16)

The first term on the right hand side is a central difference approxi-

mation (albeit an unusual one) to AQr’ The second term is a fourth

difference diffusion term that arises naturally in the SCM method and

helps squash high frequency oscillations.

The various eigenvalues and matrices are now defined. For coefficient

Matrix A:

AIA = u

A

2A

(4.17a)

T I R R R ¥ I VAR (R LTI P!

°|

o

(4.17b)
] a0
(W2+4B) 72 W2y 172
0 0
0 0
-AQA A3A
( 2+‘08)'72 ( 24-leB)'77




The eigenvalues and eigenvector matrices for the coefficient matrices B and

C are similarly derived.

4,3 Relaxation of the Discretized Equations

The SCM method given above is used to discretize the inviscid terms.
Central difference approximations are used for the viscous terms. Three-
point or two-point backward discretization of the time-derivative terms
leads to second-order or first-order time accuracy as desired. The time-

discretized implicit version of Eq. 4.4 can then be written as

n+]l _n
(1+6/2) (25— ) (¢>/z)(Q ) + (AQ +(1/r)BOg*CQ+, o
(4.20)
- Hn+| + (0.0.0.9 p*)t:ranspose
v

with ¢ =0 for first-order time accuracy and ¢ =1 for second-order

time accuracy.

Writing ql to be the i-th iterate approximation to Qn ‘, we

can write the Gauss-Seidel method for Eq. 4.20, coupled with appropriate

SCM (upwind) and central difference approximations, to be

oH oH
¢ 1 1 | _(_V \ i i_i-1
[—(l+ 3) 14 alel"?mlBHa—zl’ﬂlC' (aqj - ],+(aqj - ')](q q )
. 1 i=1_ny_ ¢ Q” Q -1
+ (Hi)i,i-l _ Hi,i-l + (o’o'o’pé)transpose = 0.

To implement the Gauss-Seidel sweep, all terms with the superscript

23
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;;. "i,i-1"" are evaluated using all available i-th level values along with
i-1 level values for those quantities for which i-th level values have not
been computed in the sweep. Each cycle of sweeps comprises a forward sweep
(increasing values of indices j, k and 1) and a backward sweep (decreasing

values of indices, starting from the maximim values of these indices).

The pseudo pressure transient term p? in Eq. 4.21 is taken to be

pr o= 0+ DG - (2 """/ (8 (4.22)
Thus, when the relaxation iterations converge between two time steps, the
two transient terms for pressure, namely (p'-p") and (p'-]-pn) will

cancel each other out, leading to exact satisfaction of the continuity

equation. However, perfect convergence of the relaxation iterations is not
sought for every time step; approximate convergence of the subiterations

-

will almost always suffice.

L. 4 Advantages of the Unfactored Scheme

Approximately factorized schemes incur an error due to the factoriza-

tion. Also, for the imcompressible Navier-Stokes equations, when the conti- ]
|
nuity equation in modified as in Eq. 4.2, for large values of B, the momentum

equations are contaminated by this factorization error, Unfactored schemes

avoid this error. Thus, larger values of B can be chosen. When B ~ 1/(At)

the exact continuity equation (Eq. 4.1b) is satisfied to first-order accu-
racy. And larger values of B lead to a greater degree of satisfaction of
the continuity equation. The other advantage of unfactored implicit schemes
is that, as a steady state is approached, larger and larger values of the

time step may be taken.
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5.0 ROTATING FRAMES OF REFERENCE

Thus far, we have been considering an inertial reference frame and the
dependent variables were the inertial velocity components., It is often very
convenient to work with a frame of referencé attached to the spinning and
precessing shell and also compute the velocity components in the rotating
frame of reference. The governing equations are given below for a coor-
dinate frame attached to a rotating shell. The treatment follows that of

Greenspan [Ref. 17].

Let L, Q-‘, U characterize reference length, time and velocity,

-
respectively, of a particular motion. The position vector r, time t,
: -
B velocity vector q, rotation vector 5 , and pressure can then be scaled

respectively by L, Q' , U, Q and pUL. The vectors are in a Cartesian

h frame of reference fixed to the spinning and precessing shell, Then for

5 B = a(k + e8v)) (5.1)

the governing equations may be written in non-dimensional form as

Momentum equations:
atE + €q.Vq + 2(k + e8(t)) x g = Vp + T x (d/dt)3 + EvZq (5.2a)
Continuity equation:

V3 = 0 (5.2b)
where the Ekman number is given by

E = v/(QLz) (5.3a)

X and the Rossby number is
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e = U/(QL) (5.3b)

The reduced pressure p appearing above includes along with the static
pressure, any body forces (assumed to be conservative), and the centri-

fugal acceleration.

p = static pressure + conservative body force

(5.4)
-(172)p@ x V). @ x 7)

The 2z axis and consequently the k wunit vector is assumed to be the

axis of spin of the container. The precession E(t) is superposed on this

baslc spin.

The governing equations 5.1 and 5.2 have been written in a Cartesian
coordinate system attached to the spinning shell, The 2z coordinate lies

along the spin axis. The following remarks are useful to transform these

equations into a set of equations written for a cylindrical coordinate system

attached to the rotating shell and for cylindrical dependent variables in
that system. The 2z axis is identical in both Cartesian and cylindrical

systems, The other axes are linked by

X = r cosf , y = r sinf (5.5)

The velocity components are linked by

ucartesian = uycosb - v sind
Veartesian = u sing + v cosb (5.6)

w .
cartesian = w
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where the cylindrical velocity components have been denoted as usual by

u, v and w.

The metrics transform according to

x = cosb , X, = =r sinb

- ® (5.7)
Y, = sind , Yo = T cosf
and

r, = cosb , 6, = - (sinB)/r

(5.8)

r = sinb R 8 = (cosB)/r

Yy Y

There are three scalar equations identifiable in the vector equation
5.2a, one each for each Cartesian velocity component, To go from the equa-
tions in 5.2a and 5.2b to a cylindrical variable formulation similar to
Eq. 4.1a and Eq. 4.1b, we can take the following steps. First, in each of
the equations in 5.2; transform the independent variables using

3/9x cos® 3/ar - (1/r)sinB 3/36

3/3y sing 3/ar + (1/r)cos® 3/36 (5.9)

3273x2 + 32/ay2 = 3%/3c% + (1/r)a/3r + (1/¢2)32/302

Now, we have four equations for the Cartesian velocity components

but in the cylindrical independent variables, Into each of these equa-
tions, substftute Egqs. 5.6 to obtain four equations involving the cylind-
rical velocity components, The continuity equation and the equation for
Cartesian w component of velocity will now be in the form of Eqs. 4.1,

However, the other two equations will each involve linear combinations

of u and v. To obtain mutually exclusive prediction equations for




RS
}-'_"’-4‘
Maifaat t

- . . .
IR BN D P P SR Y R

AN S A "Rk ~ v N a
AR }_ KRPERAN e LRSS S g RO A G A0 10 AL A AL R SRS ot g g st bt At S AR rs i s et B e Art e e aie:

~

u and v, recombine these two equations as follows: to obtain an equation

for u, multiply the equation for u by cosf, the equation for

cartesian

Veartesian by sin , and add; to obtain an equation for v, multiply the

equation for u by (-sin6), the equation for v by (cos8)

cartesian cartesian

and add,.

This procedure has been used for the sets of governing equations given
in the next two sections. The difference between those sets and Eqs. 4.1
can be summarized as follows: all convective terms are now scaled by the
Rossby number; new source terms corresponding to the Coriolis acceleration
2(; +e8(t)) x q and corresponding to the acceleration of the rotating
frame given by T x dd/dt , are added. Thus, it is an easy matter to
adapt the methodology developed for the primitive variable formulation in
the last section for the inertial coordinate system to rotating frames of
reference. The source terms have no spatial derivatives in them and are
added in a very straight-forward manner. For computing efficiency, they
must however be treated implicitly in the relaxation iterations. That is,
the Jacobian matrix of these source terms must be included along with the
other terms in the diagonal matrix of the left hand side of the operator in

the implicit method,

b
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6.0 CONING - SPIN AND PRECESSION

We now apply the governing equations developed in the last section for
rotating frames of reference to the particular case of simple coning which
is a combination of spin and precession, Let the cylindrical shell be spin-

ning with spin rate  and precessing with precession rate w. We define

Tw = @/8 (6.1)

from which we can define

o = I/ (0 + TNU) (6.2)

Let the axis be precessing with a yaw angle o . In a slight departure
from the normalization procedure of the previous section, we define first

the Rossby number to be
€E= ao : (6.3)

from which we can derive the normalizing velocity U to then be

" U = eQL (6.4)
E where L is the usual length scale (typically taken to be the radius of

- the cylinder). All we have done here is to pick the Rossby number first

[ ]

5 and obtain the non-dimensionalizing velocity from it, rather than the other
- way around.

" The perturbation &(t) is then given by [Ref. 17]

r

.

.
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3= “Twy (cos(ot) ? + sin(ot) } )

The source terms in Eq. 5.2a are thus given by

2(k + e3(t)) x § =

_ ) + . A
(vcartesuan ETNU sinot ) i
+ . + j
2 (ucartesnan ETNU cosot ) j
+ . i + .
€TNU(ucarte5|an sinat vcartesnan cosat) k
and Z cos Ot i
> ~
r x dd/dt = oT +z sin ot j

NU

-(x cos ot + y sinot)k

In the cylindrical rotating frame of reference, the source terms that

must be added to the left hand side can be computed from the above.

Source term for radial momentum equation

= -2v - ZeTNUsin(ot-e) - chNUcos(ot-e)

Source term for azimuthal momentum equation

= +2y + 2£TNUcos(ot-e) - onNUsin(ot-e)

Source term for axial momentum equation

= ZETNU[u sin(ot+8) + v cos(ot+8)] + GTNU[x cosot + y sinot)

The boundary conditions along all walls are given to be

in the rotating frame,
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(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)"
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7.0 SPINNING SHELL WITH PRECESSING LID

In this section, we consider a spinning cylindrical shell with only the
lid precessing at one end of the cylinder. Once again, a, 2, w are defined
to be the precession angle, spin rate and ﬁfecession rate, respectively (as

before). However, for this case, we define

o= - Tw (7.1)

and we define the Rossby number to be
€ = sin(a) . (7.2)
The rotating frame of reference does not precess, Thus,

3y = o (7.3)

and the source term is simply given by 2K x a - This contributes -2v

to the radial momentum equation and 2u to the azimuthal momentum equation.

The boundary conditions along the walls are given as follows:

Along the walls,

u = v = 0 . (7.4)

w=20 . (7.5)

Along the upper end wall,

wW=rog sin(ot+6k) (7.6)

where Ok is a given phase angle.
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8.0 CONCLUDING REMARKS

A new formulation is presented for constructing finite difference algo-
rithms for the incompressible Navier-Stokes equations. The new method is
based on constructing relaxation procedures’for unfactored implicit upwind
schemes for the hyperbolic part of the system of governing equations taken
together with central differencing for the viscous terms. The new approach
has been appiied to the axisymmetric stream function formulation as well as
for the primitive variable equations in three spatial dimensions. The
formulation has been extended for rotating frames of reference. The two
cases considered here are 1) coning motion, and 2) spinning shell with
precessing lid. The computer programs developed in this study have been
installed at the Ballistic Research Laboratory, Aberdeen Proving Ground,
and are being used to obtain results by BRL personnel for many cases of
interest. Those results will be incorporated into a BRL Technical Report

at a future date.
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